
June 2005 www.stsc.hill.af.mil 13

The Unified Modeling Language
(UML) is a notation that can be

applied to the software development
process. UML, in itself, is not a software
development process, but a system model-
ing language developed by Grady Booch,
James Rumbaugh, and Ivar Jacobson of
Rational Software. It provides a design
notation whereby the scenarios for which
the system requirements can be utilized
are depicted as well as subsequent design
notation for the chosen implementation.
This methodology was a merging of these
men’s separate practices in object-oriented
(OO) software design notation1. The pri-
mary goal of UML is to model systems
using OO software (also referred to as
architectural-based software).

UML:The Why
Whenever something is built, drawings are
made to describe the look and feel of the
entity being built. These drawings work as
a specification of how we want the fin-
ished product to look. The drawings are
handed over to builders or are broken into
more detailed drawings necessary for the
construction. A well-architected product
pays off in the end, but high quality does
not just happen. Software quality is a result
of correctly understanding the require-
ments, a solid design that is readily imple-
mented into code, quality user documenta-
tion, and is committed to satisfying the
user’s needs.

Software design is the equivalent of
these construction drawings, and is devel-
oped simply to produce a software solu-
tion to a problem. The process of soft-
ware design can be described as an activi-
ty in which the designer develops a highly
abstract model of a solution and then
transforms it into a very detailed design.
OO, or architectural-based design, guides
the designer into thinking about the
decomposition of problems into a collec-
tion of autonomous agents or objects that
can be mapped as closely as possible to a
physical representation of the system. The
designer can then resolve the system in
terms of behaviors and responsibilities of
objects.

By reducing the interdependency

among software components, architectur-
al-based programming permits the devel-
opment of reusable software. Such soft-
ware components can be created and test-
ed as independent units in isolation from
other portions of a software application.
Programming then becomes the simula-
tion of the model spectrum. Keep in mind
that the designer’s ultimate requirement is
to meet the fitness of purpose of the user’s
needs: Does it work and does it do the
required job as well as possible2? 

Note that it takes less time to build a
system by making instructions (and follow-
ing them) than it would take to start from
scratch to build a system without direc-
tions. This is because documenting the
specifications to the desired product
allows the analyst/developer to (1) verify
his understanding of the task at hand, (2)
visualize and identify the most crucial
components of the system, and (3) identi-
fy goals that keep the team focused to the
system objectives. The time considered
gained by omitting the development of
concrete plans is paid for many times over
in misinterpreted requirements, inefficient
code implementation, faulty software, and
unhappy end-users.

UML is a standardized design language
that provides a mechanism for creating this
design, particularly when the software being
developed is done by using OO principles.

UML uses foundation pieces that
describe the abstraction of system com-
ponents called classes, and the instantia-
tion of those classes into system objects
that are later used to provide management
of component functionality and data. For
further details on OO techniques, see the
Notes section at the end of this article.

UML:The How
UML is defined by depicting the software
from various aspects or views. Each view
can be displayed using a variety of dia-
grams that detail the contents of the
views. Each diagram is composed of OO
concepts to include classes, objects, mes-
sages, relationships, and dependencies.
These concepts or elements are persistent
throughout the design process, or rather
they do not change meaning or symbolo-
gy throughout the design.

By looking at a physical system from
different views, a developer or user can
concentrate on one aspect of the system at
a time. The UML views are the following:
• Use Case View: Depicts the func-

tionality of the system as perceived by
the external actors.

• Logical View: Depicts how the func-
tionality is designed inside the system.

• Component View: Depicts the
organization of the code components.

• Concurrency View: Depicts concur-

How and Why to Use the Unified Modeling Language
Lynn Sanderfer

TecMasters, Inc.

This article addresses the Unified Modeling Language and its purpose, constructs, and application to defense software devel-
opment applications.

Figure 1: Use Case Diagram



rency in the system, addressing the
problems with communication and
synchronization that are present in a
concurrent system.

• Deployment View: Depicts the
deployment of the system into the
physical architecture with computers
and nodes.
To display these views, UML intro-

duces nine different types of diagrams:
Use Case Diagrams (see Figure 1), Class
Diagrams, Object Diagrams, Sequence

Diagrams, State Diagrams, Collaboration
Diagrams, Activity Diagrams, Component
Diagrams, and Deployment Diagrams.3

Use Case Diagrams 
Use case modeling is a design modeling
technique that uses both verbal and graph-
ic descriptions to reveal what a new system
should do or what an existing system
already does via Use Case Diagrams. These
diagrams are the starting point when
designing a new system using UML. This
notation or diagram is designed to com-
municate exactly what is expected of a sys-
tem upon completion to management,
customers, and other interested parties.

There are four basic components of
Use Case Diagrams:
• System.
• Actors.
• Use cases.
• Relationships.
The system is the entity that performs the

function. Actors are entities, people, or
other systems that use the system to be
developed. Use cases are the actions that a
user takes on a system. Relationships
depict how actors relate to use cases.

If additional functionality is required
in a use case description, this can typically
be handled by include and extend relation-
ships (see Figure 2). The include relation-
ship is used to indicate that a use case will
include functionality from an additional use
case to perform its function. Similarly, the
extend relationship indicates that a use
case may be extended by another use case.

To describe use cases, a software
designer would first identify the actors of
the system. Next, designers would ask the
providers of the requirements for more
information about what they want. A
designer should always keep these ques-
tions in mind as this information
exchange progresses: “What will the sys-
tem do?”, “What input/output does the
system need?” and “What are the major
problems with the current implementa-
tion of the system?”

Class Diagrams
A Class Diagram describes the static view
of the system (see Figure 3). It is a func-
tional representation of the system that
reveals where data resides and where func-
tionality is available through the use of
class attributes and operations to outside
classes. Class Diagrams define the founda-
tion for other diagrams, and show classes
of the systems and relationships among
the classes. If object instances of a Class
Diagram are shown, it becomes an Object
Diagram (see Figure 4).

To create a Class Diagram, the classes
have to be identified and described. A
class is drawn with a rectangle and divided
into three compartments: the name com-
partment, the attribute compartment, and
the operation compartment. The name
compartment of a Class Diagram contains
the name of the class. It is typed in bold-
face and centered. The attribute compart-
ment contains the characteristics that
describe the class. For example, a comput-
er class would have manufacturer, model
number, storage size, speed, and perhaps
operating system as attributes. The opera-
tion compartment contains the operations
or methods by which the attributes are
manipulated, as well as other system func-
tionalities. The operators in a class
describe what the class can do. Both
attributes and operations of a class can
have different visibility (+ for public, - for
private) privileges. Classes show their rela-
tionships by way of associations or a
semantic connection between objects that

14 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

Figure 3: Sample Class Diagram Notations

Figure 2: Extended/Include Use Case Notation

Figure 4: Sample Object Diagram



How and Why to Use the Unified Modeling Language

June 2005 www.stsc.hill.af.mil 15

indicate the direction of service, how many
relationships called multiplicity, and repet-
itiveness.

Sequence Diagrams
A Sequence Diagram describes the
dynamic view of the system (see Figure 5).
This diagram is important in that it shows
the sequence of messages sent between
the objects with respect to time. The
Sequence Diagram consists of a number
of objects shown with vertical lines. The
objects are activated from left to right with
an indication of the exchange of messages
between the objects. Messages themselves
are shown as lines with message arrows
between the vertical object lines.

Each object in a Sequence Diagram is
represented by an object rectangle with
the object/class name underlined. A verti-
cal dashed line down from the object,
called the object’s lifeline, indicates the
object’s execution during the sequence.
Communication between objects is repre-
sented as horizontal message lines
between the object’s lifelines. The arrows
indicate whether the message is synchro-
nous (flow is interrupted until the mes-
sage has completed), asynchronous (active
object does not wait on a response), or
simple (flat flow depicting control is
passed without indicating details).
Sequence Diagrams can also show
branching, iteration, recursion, creation,
and destruction of objects.

State Diagrams
State Diagrams are dynamic in nature and
depict how an individual object changes
state when a behavior is invoked (see
Figure 6, next page). It also indicates the
invoking event. A state diagram should be
attached to all classes that have clearly
identifiable states and complex behavior.

A state-chart diagram is composed of
states, transitions, and events. A basic state
is shown as a rectangle with rounded cor-
ners. The name of the state is placed with-
in the rectangle. The first state in a model,
or the start state, is simply a solid dot. The
last state in a model (the end state) is a
solid dot with a circle around it.
Transitions are used to show flow from
one state to another. A transition is mod-
eled by an open arrow from one state to
another.

Collaboration Diagrams
Collaboration is another depiction of the
dynamic behavior of a system (see Figure
7, next page). Collaboration Diagrams,
showing both a context and an interac-
tion, can be thought of as a combination
of the Class Diagram and Sequence

Diagram. Collaboration Diagrams actually
model either objects or roles and their
sequenced communication between each
other. Message sequence in Collaboration
Diagrams is identified by numbering the
messages with labels.

Message type in Collaboration
Diagrams is the same as in Sequence
Diagrams: synchronous, asynchronous,
and simple. Messages sent in parallel can
be described using letters in the sequence
number expression. For example, the
sequence numbers 1.1a and 1.1b of two
messages in the collaboration diagram
indicate that those messages are sent in

parallel.

Activity Diagrams
The Activity Diagram captures actions as
the states of a system change (see Figure
8, page 17). Activity Diagrams focus on
work performed in the execution of a
function. The states in the Activity
Diagram transition to the next stage
directly when the action in the state is per-
formed without specifying any event.
Activity Diagrams also have swimlanes, or
a grouping of activities according to the
responsible software entity. Activity
Diagrams show the following:

Object-Oriented or 
Architectural-Based Concepts

Architectural-based design models the problem in terms of a set of particular enti-
ties or objects that can be recognized in the problem itself, together with a descrip-
tion of the relationships that link these entities. The initial description of the system
is defined in an abstract top-down process. A complete and detailed model of the
solution is then developed by elaborating the descriptions of the entities and the
interactions occurring between them. The strategy then is composed of grouping
elements together in the design that can be described with the same functionality.
The implementation is done as a bottom-up development process. Programming
from an architecturally based design is comprised of the following concepts:
• Object is the encapsulation of data values (or states) and operations (or behav-

iors) into one executable entity.
• Class is the abstract or generic description of a concept in terms of data types

and operations.
• Inheritance is the principle that knowledge of a more general category is appli-

cable also to the more specific category. In this way classes can be organized
into a hierarchical inheritance tree.

• Information hiding is the principal by which a client sending a request or invok-
ing a process need not know the actual means by which the request will be hon-
ored.

• Abstraction is the ability to describe a type or functionally in generic terms there-
by isolating design and execution information. Information hiding is a specific
type of abstraction.

Figure 5: Sample Sequence Diagram



• The work that will be performed when
an operation or method is executing.

• The internal work of an object.
• How a set of related actions may be

performed, and how they affect
objects around them.

• An instance of a use case in terms of
object state changes.
Activity Diagrams can have a start and

an end point. A start point is shown as a
solid filled circle; the end point is shown as
a circle surrounding a smaller solid circle.
The actions in an Activity Diagram are
drawn as rectangles with rounded corners.
Within the action, a text string is attached to
specify the action(s) taken. Transitions

between actions are shown with an arrow,
to which guard-conditions, a send-clause,
and an action-expression can be attached. A
diamond shaped symbol is used to show a
decision point. Swimlanes group activities,
typically, with respect to their responsibility.
Swimlanes are drawn as vertical rectangles.
The activities belonging to a swimlane are
placed within its rectangle with a name at
the top.

Component Diagrams
A Component Diagram is a type of imple-
mentation diagram (see Figure 9); it shows
where the physical components of a sys-
tem are going to be placed in relation to

each other. In the Component Diagram
the physical pieces are the actual software
entities.

A component is shown in UML as a
rectangle with an ellipse and two smaller
rectangles to the left. The name of the
component is written below the symbol or
inside the large rectangle. A software
dependency is shown as a dashed line with
an open arrow and indicates that one
component needs another to be able to
have a complete definition.

Deployment Diagrams
The deployment view is the second type
of implementation diagram and shows the
physical layout of the software system
after being installed on the actual hard-
ware system and how the software com-
ponents will interact with each other.
Deployment Diagrams (see Figure 10) are
described in terms of nodes, connections,
and software components executing on
nodes.

Nodes are physical objects that have
some kind of computational resource.
This includes computers with processors,
as well as devices such as printers, com-
munication devices, card readers, and so
on. A node is drawn as a three-dimension-
al cube with the name inside it.

Nodes are connected via a communi-
cation association. The communication
type is represented by a stereotype that
identifies the communication protocol or
the network used. Executable component
instances may be contained within node
instance symbols, showing their physical
residence and execution on the hardware.

Conclusion
UML is a standard practical methodology
used in representing OO systems, regard-
less of the procurement or financial
aspects of the program, i.e., commercial
or government. Advanced software proj-
ects or projects that are committed to
leading-edge software technologies and
concepts typically find value in designing
their software systems to the physical sys-
tems that they represent. This allows non-
software personnel to grasp the concept
of operations of the system without hav-
ing to understand software terminology.
This also lends itself to reducing software
life-cycle costs because it produces modu-
lar code with well-defined interfaces.

Historically, it can be shown that the
more time rendered on requirements and
design, the better the product when in the
code and test phase. It does, in fact,
improve the quality of your product, as
well as other development factors, when
the design of the system is clearly con-

Reality Computing

16 CROSSTALK The Journal of Defense Software Engineering June 2005

Figure 6: State Diagram Example

Figure 7: Collaboration Diagram Example



How and Why to Use the Unified Modeling Language

June 2005 www.stsc.hill.af.mil 17

veyed with respect to the intended
requirement. However, as Doug
Rosenberg stated [1], “The cold, hard real-
ity of the world of software development
is that there is simply never enough time
for modeling.”

The methodologies provided by UML
are very rarely utilized exhaustively. There
is simply not enough time or money to do
so. In fact, I have seen excellent defense
software efforts that implemented OO
design with design techniques other than
UML. However, to the designers and
developers of software systems, UML
offers very sound techniques in describing
systems. Furthermore, if you are new to
OO software development, UML pro-
vides a road map by which, if you take the
time to depict the design in the various
UML software design views, it is easier to
produce a good product than not!u

Reference
1. Rosenberg, Doug, and Kendall Scott.

Use-Case Driven Object Modeling With
UML: A Practical Approach. Addison-
Wesley Professional, Mar. 1999.

Notes
1. Grady Booch developed Booch dia-

grams. Booch defined the notion that
a system is analyzed as a number of
views where each view is described by
a number of diagrams. The principals
in his methodology were sound,
based on depicting several views of
the software; however, the Booch dia-
gram notation that was based around
clouds symbology was cumbersome
to implement.

2. James Rumbaugh developed the Ob-
ject Modeling Technique while em-
ployed at General Electric. His meth-
odology was founded in expressing the
software in various methods: the ob-
ject model, the dynamic model, the
functional model, and the use-case
model.

3. Ivar Jacobson developed the Object-
Oriented Software Engineering/
Objectory design methodology. His
system is based on use-cases, which
define the initial requirements on the
system as seen by an external actor.

Additional Reading
1. Roff, Jason T. UML A Beginner’s

Guide. McGraw-Hill, 2003.
2. Eriksson, Hans-Erik, and Magnus

Pinker. UML Toolkit. John Wiley &
Sons, Inc., 1998.

3. Kroll, Per, and Philippe Druchten. The
Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP.

Addison-Wesley, 2003.
4. Budgen, David. Software Design.

Addison-Wesley, 1994.
5. Budd, Timothy. An Introduction to

Object-Oriented Programming. Addi-
son-Wesley, 1991.

6. Pressman, Roger S. Software Engi-
neering: A Practitioner’s Approach.
3rd ed. McGraw-Hill, 1992.

7. Stephen Prata. The Waite Group’s
C++ Primer Plus. 3rd ed. Indiana-
polis, IN: Sam’s Publishing, 1998.

Figure 8: Activity Diagram Example

About the Author

Figure 9: Component Diagram Example Figure 10: Deployment Diagram

Lynn Sanderfer is a
software analyst for
TecMasters, Inc. and is
currently contracted on
the Army Mission Plan-
ning Software Program.

She has been in software develop-
ment/software engineering for 18 years.
Sanderfer has completed the Software
Life Cycle Development Certification,
the Software Engineering Management
Certification, and the Advanced Soft-
ware Development Certification offered
by the Air Force Institute of Technolo-
gy Software Professional Development
Program. She is also certified as a

Capability Maturity Model® Integration
Auditor with CSSA, Inc., a licensed part-
ner of the Software Engineering
Institute. She has a bachelor’s degree in
engineering from the University of
Alabama in Huntsville and is currently
working on her master’s degree in soft-
ware engineering there.

TecMasters, Inc.
1500 Perimeter PKWY
STE 200
Madison,AL 35758
Phone: (256) 830-4000
Fax: (256) 830-4093
E-mail: theresa.sanderfer@us.army.mil


